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State-space assessment models (SSMs) have garnered attention recently because of their ability to estimate time variation in biological and
fisheries processes such as recruitment, natural mortality, catchability, and selectivity. However, current SSMs cannot model time-varying growth
internally nor accept length data, limiting their use. Here, we expand the Woods Hole Assessment Model to incorporate new approaches to
modelling changes in growth using a combination of parametric and nonparametric approaches while fitting to length and weight data. We
present these new features and apply them to data for three important Alaskan stocks with distinct data and model needs. We conduct a “self-
test” simulation experiment to ensure the unbiasedness and statistical efficiency of model estimates and predictions. This research presents
the first SSM that can be applied when length data are a key source of information, variation in growth is an essential part of the dynamics of the
assessed stock, or when linking climate variables to growth in hindcasts or forecasts is relevant. Consequently, the state-space approach and
growth estimation can be applied to more fish stocks worldwide, facilitating real-world applications and implementation of simulation experiments

for performance evaluation of SSMs for the many stocks whose assessments rely on length data.

Keywords: growth, random effects, size-at-age, weight-at-age, Woods Hole Assessment Model (WHAM).

Introduction

Variation in biological (e.g. recruitment, natural mortality,
growth) and fishery (e.g. selectivity, fishing pressure) processes
has frequently been documented for fish stocks (Thorson et al.,
2015b; Aeberhard et al., 2018). Somatic growth (“growth”
hereafter) is the increase in the size or weight of a fish through-
out its lifespan. Growth may vary among fish, time, and space,
and this variability is evident for several fish stocks and is a
critical driver of fluctuations in population biomass (Stawitz
and Essington, 2018). Some important factors driving growth
variability are (1) conditions during early life stages (Cian-
nelli et al., 2020): larval size variability (which affects the
size of older stages), (2) genetic effects (Berg et al., 2018:
slow-growing females will produce slow-growing offspring),
(3) density-dependence (Rijnsdorp and van Leeuwen, 1996:
higher abundance will increase competition and potentially
decrease growth rates), (4) fishing pressure (Lester et al.,2014;
Wilson et al., 2019: fishing may remove fast-growing fish,
therefore, decrease population size-at-age over time), and (5)
environmental conditions (Kreuz et al., 1982; Baudron et al.,
2014: temperature, prey density, and quality are factors im-
pacting growth rates). Growth in stock assessment models
is modelled as changes in mean size- or weight-at-age at the
population level. Historically, variability in mean size-at-age
has been ignored in models based on the integrated analysis
paradigm. Nevertheless, increasing evidence shows that this
practice may lead to biased model estimates (Correa et al.,
2021; Punt et al., 2015; Lee et al., 2018), and the modelling

of growth variability in fishery assessment models based on
the integrated analysis paradigm has become more common
in recent years.

Currently, there are two common strategies to account for
temporal variability in growth in a stock assessment: (1) pre-
specifying weight-at-age based on empirical data (empirical
weight-at-age; EWAA), or (2) modelling temporal variability
in the parameters of a growth equation. The former strategy
is more accurate in data-rich situations and does not require
additional parameters to be estimated (Kuriyama et al., 2016).
However, EWAA is assumed to be perfectly known and does
not separate changes in mean length-at-age and the morpho-
metric condition of the length-weight relationship. How to
handle missing weight observations (e.g. a missing survey) is
unclear, and any uncertainty in EWAA is ignored. The sec-
ond approach models variation in mean length-at-age and
uses the length-weight relationship to estimate the popula-
tion mean weight-at-age. Estimating growth parameters re-
quires informative data such as marginal length compositions
or conditional age-at-length (CAAL; Lee et al., 2019) and may
be computationally demanding and challenging since model
predictions of size-specific data are also affected by other
model components such as selectivity. Traditionally, mod-
elling temporal variability in growth parameters has been per-
formed using the “penalized maximum likelihood” (PML) ap-
proach, which estimates penalized deviations €,(0, 62) from
the mean parameter while subjectively fixing or iteratively
tuning the penalty term o2 (e.g. Methot and Taylor, 2011), or
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approximating it (Thorson ef al., 2015a). In some cases, an
environmental index, commonly assumed to be known with-
out error, is included in the stock assessment allowing growth
parameters to vary over time through a linking equation (Lee
etal.,2018).

State-space assessment models (SSMs) are a type of stock
assessment that separate and estimate the process error in the
population dynamics and the observation error in the data
(Aeberhard et al., 2018). Stochastic processes affecting the un-
observed temporal dynamics of a stock are accounted for by
the introduction of random effects. In SSMs, the penalty terms
are estimated as variance parameters that constrain the as-
sociated random effects, while parameter estimation involves
maximizing the marginal likelihood (Skaug and Fournier,
2006; Aeberhard et al., 2018). The state-space approach pro-
duces more realistic levels of uncertainty compared to the
PML approach, and the resulting assessments exhibit smaller
retrospective patterns (Miller and Hyun, 2018; Stock et al.,
2021). The origin of these models is not recent (Sullivan, 1992;
Gudmundsson, 1994); however, their use has been limited
due to the computational burden when using the common
modelling platform ADMB (Fournier et al., 2012). The devel-
opment of Template Model Builder (TMB; Kristensen et al.,
2016), which performs the Laplace approximation efficiently
and automatically, has allowed more extensive use of SSMs
during the last decade. Currently, more than 20 official fish
stock assessments by the International Council for the Explo-
ration of the Sea are conducted using a state-space framework
(Nielsen and Berg, 2014; Aeberhard et al.,2018), and its use is
growing on the east coast of North America (Cadigan, 2016;
Miller et al., 2016; Miller and Hyun, 2018; Stock et al., 2021).
Some common SSM platforms are SPiCT, which relies on in-
dices of abundance (Pedersen and Berg, 2017), and SAM and
the Woods Hole Assessment Model (WHAM), which use in-
dices of abundance and age data (Nielsen and Berg, 2014;
Stock and Miller, 2021).

WHAM is a state-space age-structured assessment model
coded in TMB (Stock and Miller, 2021; Stock et al., 2021)
and has been applied to data for several stocks off the U.S.
east coast (Stock et al., 2021; du Pontavice et al., 2022;
Legault et al., 2023), where extensive age data (e.g. age com-
positions) are available for many years. WHAM currently
accounts for variability in growth by incorporating annual
EWAA information, and internal growth modelling using size
(e.g. marginal length compositions) or size-at-age information
(e.g. CAAL data) for parameter estimation is unavailable. In
general, growth modelling in SSMs has not been thoroughly
explored (but see Miller et al., 2018), and research is needed
to understand the performance of these SSMs when growth
variability is estimated. Furthermore, the absence of growth
modelling approaches and the inability to include size-specific
information have limited the use of SSMs in other fishery ju-
risdictions where age information is not extensive.

In this study, we aimed to (1) document how parametric and
nonparametric modelling of growth can be included in state-
space age-structured stock assessment models, (2) apply these
approaches to three case studies in Alaska: walleye pollock
(Gadus chalcogrammus) in the Gulf of Alaska (GOA), Pacific
cod (Gadus macrocephalus) in the GOA, and Pacific cod in the
eastern Bering Sea (EBS) based on a WHAM implementation,
and (3) for each of the models in the case studies, conduct
a “self-test” simulation to assure the unbiasedness of growth
model estimates. To our knowledge, this is the first study that
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presents an SSM that accounts for growth variation and uses
size data for parameterization. The new extension of stock
assessment will allow assessment analysts to apply SSMs to
a broader set of species, including data-moderate fish stocks
with few or no years of age compositions. It will also allow
stock forecasts to propagate climate impacts and uncertainty
about future growth scenarios.

Methods

Section “Growth modelling” outlines how parametric growth
can be modelled in a state-space stock assessment, Section
“Overview of the Woods Hole Assessment Model” briefly
overviews some key features of WHAM, Section “Case stud-
ies” describes the case studies, and Section “Simulation exper-
iment” outlines the simulation experiment. The source code of
the implemented modelling features can be found at https://gi
thub.com/timjmiller/wham/tree/growth (tested version, used
in this study) and https://github.com/GiancarloMCorrea/wh
am/tree/growth (in-development version). The code to repli-
cate the case studies and simulation experiments can be
found at https://github.com/GiancarloMCorrea/AKWHAM.
The software R (R Core Team, 2022) and the ggplot2 pack-
age (Wickham, 2016) were used for analyses and to produce
figures.

Growth modelling

Variation in growth is one mechanism that can explain
changes in population mean length- or weight-at-age. The
sections below outline how we model the mean length- and
weight-at-age and include random effects on model param-
eters (Figure 1). Online Appendix A describes the data in-
puts that are used to inform growth estimation, and online
Appendix B the likelihood components. Additionally, linking
these growth parameters to environmental variables is also
possible, as described by Stock and Miller (2021) for processes
other than growth.

Parametric modelling of mean length-at-age

We first introduce the feature used to specify a parametric
model of mean length-at-age. The basic growth equation is
the Richards’ equation (Richards, 1959), with linear growth
below a reference age (d), based on the Schnute parameter-
ization (Schnute, 1981). For the first year (y = 1), the mean

length-at-age a at the start of the year (L, ,) is calculated as

- Ly + ba fora<a )
TN+ (LY — L) exp (—k (afd)))l/y fora>a’
where b= (L; — L, . )/, L; is the mean length-at-age 4, L, ..

is the lower limit of the smallest length bin in the population
assumed in the model, Ly is the asymptotic length, and k& is
the growth rate. The linear growth below age a is because, in
most cases, there is little information about the actual size-
at-age trajectory for very young animals (Methot and Wetzel,
2013).

Th)e von Bertalanffy equation is Equation (1) with y = 1.
Fory > 1, ﬂy.a is calculated as

fora<a
1/y

_— L.+ ba
e fora>a’

(E)Vr—l,a—l + (i’;/r—l.a—l - Lgc) (exp (—k) — 1))
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Figure 1. Data (white blocks) used to estimate growth. Population mean length-at-age (LAA, red blocks) can be modelled using a parametric (von
Bertalanffy or Richards equation) or nonparametric LAA approach. Population mean weight-at-age (WAA, blue blocks) can be modelled using an empirical
weight-at-age (nonparametric WAA) approach or using a length-weight (L-=W) relationship (which uses mean length-at-age information).

_Mean length-at-age a at any fraction 6 € [0, 1] of year y
(Lyat0) is calculated according to:

Lyaso = (1] P, L k) 1))
yato = ( y71,471+( y—la-1 " oo) (exp (—koy) = 1)) .

(3)

Random effects (§) can be predicted on the mean param-
eters (i) in logarithmic scale in Equations (1-3). They are
assumed to be normally distributed with zero mean but au-
tocorrelated over the years or cohorts:

log(Leo,) = pr,, + 81,0 (4a)
log (kt) = wup + 8, (4b)
log(La) = 1, + 83,4, (4¢c)

where ¢ represents years or cohorts. The random effects, on
a given growth parameter, can be first-order autoregressive
AR(1):

8:18:—1 ~ N (p8-1,0¢) (5)

with initial condition:
2
9G
8 (o, : _p2> (6)

e

The covariance is

otp
(1-p?)
where o and p are the AR(1) variance and correlation coeffi-
cient over years or cohorts, respectively. Including first-order
autocorrelation in the model formulation has been shown to
improve forecast skill in other demographic processes (John-

son et al.,2016), but has not, to our knowledge, been explored
for growth parameters.

Couv (8, 8;) = (7)

Nonparametric modelling of mean length-at-age

We also introduce a nonparametric approach to model mean
length-at-age. This approach does not use conventional para-
metric growth equations. Instead, we assume the average pop-
ulation mean length-at-age (L) on January 1st are parameters
(i.e. fixed effects). To model time variation, a random effect
(84,y) can be predicted on L, for each age a in logarithmic scale

(17,) to allow for a correlated (smoothed) process by age and
year:

log(Lya) = pi, + 8ay- (8)

The random effects matrix A has a two-dimensional (2D)
stationary AR(1) structure distributed as

vec (A) ~ MVN (0, %), (9)

where vec(A) = (81,1, ..+, S1.ys ---»84.15--.,04y) is the vec-
tor of random effects, such that A and Y are the number
of ages and years, respectively. The covariance matrix (X) of
vec(A) is

[y—7]
O'Gpage o pyear

) ()

where 6, page, and pyeqr are the estimated AR(1) variance and
correlation coefficients by age and year, respectively. The mean
length-at-age a at any fraction 6 of year y (Lyaiq) is based on
linear interpolation between Lya and Ly+1 gt

Ly,a+9 = Ly,a + (Ly+1,a+1 - Ly,a) 0. (11)

This parametrization is identical to the M-at-age avail-
able in WHAM (see Stock and Miller, 2021) and acts like a
smoother across the mean length-at-age matrix with the con-
straints estimated from the data. This approach has three note-
worthy features: it can predict negative changes in the size-at-
age of a cohort (resulting from processes affecting size-at-age
besides growth), naturally accounts for missing data, and can
be projected into the future as in other processes in an SSM.
Because the smoother complexity is related to the information
contained in the data, and there is no parametric growth equa-
tion, we refer to this as “nonparametric,” recognizing that this
term is not consistently defined in the statistical literature.

Y = COU (8,1’),, 5,;,}7 (10)

Parametric modelling of mean weight-at-age

Next, we introduce a parametric model of mean weight-at-
age. This approach uses the allometric length-weight relation-
ship to calculate the weight (w) in kg for a given population
length (/) in cm:

wl=Q1lQZ, (12)

where Q1 and 2, are the weight coefficient and exponent, re-
spectively. Random effects (§) can also be predicted on these
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parameters by year or cohort, and follow the structure shown
in Equations (4-7). The population mean weight-at-age can
then be predicted using the age-length transition matrix:

Wya =D @prattr, (13)
i

where the age-length transition matrix (¢, ,) represents the
variability in fish length within an age (Methot and Wetzel,
2013) (online Appendix C).

Nonparametric modelling of mean weight-at-age

Last, we introduce a nonparametric approach for mean
weight-at-age. As for the nonparametric modelling of mean
length-at-age, the parameters are the population mean weight-
at-age W, (January 1st) with random effects (8) to allow for
temporal variability:

log(Wya) = phyy, + 8ay- (14)

Random effects have the same structure as shown in Equa-
tions (9) and (10). The mean weight-at-age a at any fraction
0 of year y (W), 44¢) can be calculated as

Wy,a+9 = Wy,a(Gy,a)ev (15)

where G,, is the growth rate and is calculated as G,,, =
Wyi1.4+1/Wy,a. This parametrization approximates the sea-
sonal non-linearity of the weight-age relationship without re-
quiring extra parameters. The calculation of predicted quan-
tities is described in online Appendix D. Additionally, we also
added selectivity-at-length functions given their importance
when modelling growth (online Appendix E). As discussed
by Francis (2016), size-based selectivity would make a sam-
ple random at size, while an age-based selectivity would be
random at age (i.e. only the sizes of age a are considered ran-
dom), impacting the predicted age-size data by the assessment
model and the estimation of growth parameters. Moreover,
size-based selectivity also influences the variation in mean size-
at-age, which can be confounded with variation in growth
(Francis, 2016).

Overview of the WHAM

WHAM was built based on the structure of the Age-
Structured Assessment Program (ASAP; Miller and Legault,
2015) and uses landings, indices of abundance, age composi-
tions, environmental covariates, and EWAA data for param-
eter estimation. It implements the prediction of random ef-
fects on inter-annual transitions in numbers-at-age, natural
mortality, catchability, selectivity, and environmental covari-
ates. Input environmental covariates are treated as observa-
tions (with error), while true (unobserved) latent states can
be treated as random effects. Several options are available
to model the structure of random effects, including indepen-
dent, AR(1) or random walk, and a 2D first-order autoregres-
sive 2DAR(1) (Cadigan, 2016). These options can be applied
to annual effects and different model configurations can be
compared using the Akaike information criterion (AIC, Burn-
ham and Anderson, 2002). WHAM assumes the separability
of fishing mortality-at-age into annual fully selected fishing
mortalities (estimated as fixed effects) and selectivity-at-age
(several random effects structures available). Short-term pro-
jections and one-step-ahead residual calculations (Trijoulet ez
al.,2023) can be conducted using WHAM. Projections are es-
pecially useful for models with random effects because the
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temporally correlated process can continue into the future.
WHAM is implemented in TMB and is available as an R pack-
age (Miller and Stock, 2020).

Case studies

The new approaches to modelling growth presented in Section
“Growth modelling” were applied to three stocks in Alaska,
USA, with distinct size data and assumptions about growth
(see Figure 2 and Table 1 for a summary of data and model
configurations). We compared the spawning stock biomass
(SSB) and other relevant quantities between the official assess-
ments (i.e. those adopted by the North Pacific Fishery Man-
agement Council) and the WHAM versions.

Walleye pollock in the GOA

We used the data and model configuration of the 2021 stock
assessment (Monnahan ef al., 2021) for a case study of wall-
eye pollock in the GOA. The official assessment was imple-
mented in ADMB (Fournier et al., 2012) and contained in-
formation for one fishery and four surveys. Selectivity was
age-based for all fleets (fishery and surveys), and the param-
eters controlling the initial slope and inflection point in the
fishery double-logistic selectivity varied annually (Monnahan
et al., 2021). The Shelikof Strait age 3+ pre-spawner survey
and Alaska Department of Fish and Game bottom trawl sur-
vey had autocorrelated catchability over time. For all other
surveys, catchability was constant but estimated. EWAA was
used to account for growth variation and compute expected
indices and SSB.

We used the same data and configuration as in the original
assessment and constructed 3-year projections based on the
fishing mortality (F) in the terminal year for the projection
period. We implemented three configurations in WHAM to
account for growth variation:

1) wham_ewaa: uses EWAA information assumed to be
known perfectly (as in the original assessment). In the
projection, we use the average EWAA from the last 5
years of the assessment.

2) wham_iid: nonparametric modelling of the population
mean weight-at-age (independent random effects by
year and age). The random effects structure was used in
the projection period to calculate the population mean
weight-at-age.

3) wham_2dar1: nonparametric modelling of population
mean weight-at-age (2DAR(1) random effects by year
and age). The random effects structure was used in
the projection period to calculate the population mean
weight-at-age.

Models wham_iid and wham_2dar1 used the EWAA data
from the Shelikof Strait survey as observations, where the ob-
servation error was calculated externally and then provided to
the model (see online Appendix B). We used AIC to compare
the two configurations.

Pacific cod in the GOA

We used the data and model configuration for the 2022 stock
assessment (Model 19.1a, Hulson et al., 2022) for this case
study. The official assessment was implemented in Stock Syn-
thesis 3 (SS3) (Methot and Wetzel, 2013) and included three
fisheries and two surveys (bottom trawl and longline). Selec-
tivity was length-based and double-normal for all fleets and
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Figure 2. Data included in the official assessment models and WHAM configurations presented in this study. Circles indicate that data were present for
a given year, and the circle size is proportional to input sample size, index precision, or catch size for a given row. Each fleet (fishery or survey) is
represented by a different colour.

Table 1. Summary of model configurations used in WHAM models (GOA = Gulf of Alaska, EBS = eastern Bering Sea).

GOA Walleye pollock GOA Pacific cod EBS Pacific cod
Model information and compositional data
Number of ages 10 10 20
Minimum, maximum, and - 0.5-116.5-1 3.5-119.5-1
length bin width (cm)
Mean weight-at-age 1986-2021 - -

observations
Compositional data

Parameters
Natural mortality

Growth

Length—weight
Recruitment

Fishing mortality
Catchability

Selectivity

Error distribution for age
compositions

Error distribution for length

compositions

Marginal age compositions

Age-specific (fixed)
EWAA or nonparametric WAA

Mean recruitment estimated.
Annual deviates estimated RE
Estimated

Estimated. Annual deviates
estimated RE

Estimated. Annual deviates
estimated PML

Multinomial

Multinomial

Conditional age-at-length,
marginal length compositions

Constant with block in
2014-2016 (estimated)

von Bertalanffy (all parameters
estimated)

Fixed

Mean recruitment estimated.
Annual deviates estimated PML
Estimated

Estimated

Estimated. Annual deviates

estimated PML
Multinomial

Multinomial

Marginal age and length
compositions

Constant (estimated)

Richards (all parameters
estimated)

Fixed

Mean recruitment estimated.
Annual deviates estimated PML
Estimated

Estimated

Estimated. Annual deviates
estimated PML
Linear-parameterization of
Dirichlet-multinomial
Estimated

Multinomial

PML = penalized maximum likelihood, RE = Random effects. Data are displayed in Figure 2.
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time-varying for all fisheries and one survey. Growth was
modelled using the classic von Bertalanffy equation and was
assumed to be time-invariant. The k and L., parameters were
estimated with normally distributed priors. The catchability
parameter for the longline survey was linked to an environ-
mental covariate (bottom temperature anomalies), assumed to
be known without error, and hence varied over time. Natural
mortality, M, was constant across ages and estimated for two
time-blocks: 2014-2016 and all other years. A lognormally
distributed prior was included for M. Ageing error was pre-
specified, and ageing bias (pre-2008) was estimated across all
fleets.

We implemented the same configuration in WHAM as
in the original assessment. The environmental covariate was
treated as data, assuming a small observation error variance to
approximate the original assessment. The true environmental
state was assumed to have an AR(1) structure while estimat-
ing process error (see Stock and Miller, 2021). The ageing er-
ror matrix from SS3 was included in the WHAM model (see
online Appendix A). M, k, and L., were estimated without
priors due to the current inability in WHAM to place priors
on these parameters.

Pacific cod in the EBS

We used the data and model configuration from the 2022
stock assessment (Model 19.12A, Barbeaux et al., 2022) for
a case study of Pacific cod in the eastern and northern Bering
Sea. The official assessment was implemented in SS3 and in-
cluded information for one fishery and one survey. Selectivity
was length-based and double-normal, and time-varying for
both fleets. Growth was modelled using the Richards equa-
tion (Equation 2). SS3 estimated annual deviates on the mean
length-at-age 1.5 (Lz, where @ = 1.5 is the reference age) pa-
rameter using a PML approach (assuming mean zero and a
fixed ode = 1.48). Ageing error was pre-specified, and ageing
bias (pre-2008) was estimated across all fleets.

We included the same information and assumptions as in
the original assessment in our WHAM implementation. The
ageing error matrix from SS3 was included in the WHAM
model. We considered two model configurations to account
for variability in L;:

1) wham_ecov: The mean bottom temperature over the
EBS Pacific cod stock area obtained from the Bering10K
model (Kearney et al., 2020) was included and treated
as data. Since observation error variance was not avail-
able, we assumed 0.2 as the observation standard error,
but also evaluated the impacts of choosing 0.01 and 0.1.
The true state was assumed to have an AR(1) structure
and was linked to the L; parameter based on previous
evidence (Ciannelli ef al., 2020) by

Ls, = Laxexp(BX,). (16)

where X, is the estimated environmental covariate, and g
is the linking parameter estimated as a fixed effect.

2) wham_arl: autocorrelated annual random effects were
predicted on the L; parameter. The process error (oLzﬁ) and
the correlation coefficient (p) [see Equations (5)—(7)] were es-
timated. The mean bottom temperature index was included as
in the previous configuration while estimating the true state,
but was not linked to any parameter.

G. M. Correa et al.

We calculated AIC to compare the two configurations,
which is valid only due to the inclusion of the environmen-
tal data in both models.

Simulation experiment

We used the simulation feature of TMB to conduct a self-test
to evaluate the statistical efficiency and quantify any bias in
the growth modelling approaches presented here. Using the
estimated WHAM models presented in the previous section
(case studies) as operating models, we generated 100 new
datasets (replicates) without simulating new random effects.
For each replicate, we fitted the simulated data using the base
configuration as in the operating model. Selectivity parame-
ters were fixed for the EBS Pacific cod case since its estimation
led to very low convergence rates. We calculated the relative
error in initial abundance, mean recruitment, growth param-
eters, SSB, and F. Relative error was calculated as (& — «)/a,
where « is the true value in the operating model and & is the
value estimated in the replicate. We used the median value of
relative error across replicates as a measure of bias and the
95% simulation interval as a measure of precision. We con-
firmed the appropriateness of 100 replicates by analysing the
change in bias and precision with increasing the number of
replicates (Supplementary Figures S1-S3).

Results
GOA walleye pollock

Annual mean SSB estimates were similar among models
(Figure 3a). Larger differences were observed between 1980
and 1985, when SSB estimates from the wham_iid and
wham_2dar1 models were ~30% larger than the original as-
sessment and wham_ewaa models. Uncertainty levels were
comparable among models. Projected mean SSB was higher
for wham_iid and wham_2dar1, which also had larger uncer-
tainty than the wham_ewaa model (Figure 3b). Predicted ran-
dom effects over time for population mean weight-at-age were
similar for the wham_iid and wham_2dar1 models (Figure 3¢
and d). Random effects were very close to zero before 1985
because there were no mean weight-at-age data during that
time period. In both models, random effects increased over
time until 2010 for older ages and then decreased. Large ran-
dom effects were predicted in recent years for younger ages.
The AIC was 2161.1 for the wham_iid model and 1989.1 for
wham_2dar1 model, suggesting that weight-at-age was repre-
sented most parsimoniously using autocorrelation among ages
and years.

Selectivity varied similarly over the years among models (Su
pplementary Figure S4). Catchability estimates were also simi-
lar across models, and the largest differences between the orig-
inal ADMB and WHAM models were for the Shelikof Strait
age 1 and age 2 survey indices (Supplementary Table S1). Es-
timated population mean weight-at-age closely matched ob-
served values in the wham_iid and wham_2dar1 models, and
estimated uncertainty was low when observation errors were
small and high when observations were absent, especially for
older ages and before 1986 (Supplementary Figures S5-S8).
Population mean weight-at-age estimates in projection years
were similar for wham_iid and wham_2dar1, with the latter
model exhibiting lower uncertainty, as expected given devia-
tions are informed by adjacent years and ages (Supplementar
y Figure S9).
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Figure 3. GOA walleye pollock. (a) Mean spawning biomass estimates (SSB) from WHAM configurations and the original assessment) and 95%
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and year.

The initial abundance, mean recruitment, F, and SSB were
approximately unbiased for all the WHAM configurations
(Figure 4). Precision was lower for the F and SSB time series
during the first model years, while F was overestimated (~
+10%) and SSB underestimated (~-10%) during 1980-1990
for all models. The variance of the random effects (owa) was
unbiased for the wham_iid model but was slightly (~ —6%)
underestimated for the wham_2dar1 model. The autocorrela-
tion parameters were overestimated (<+10%), and the mean
weight-at-age estimates across replicates were unbiased for the
wham_iid and wham_2dar1l models (Supplementary Figures
§10 and S11).

GOA pacific cod

Annual SSB estimates from the wham and SS3 models fol-
lowed the same trend over time (Figure 5a), although the
wham models estimated consistently higher (~ +20%) SSB
than SS3 throughout the model period. SSB uncertainty was
also equivalent between models. Mean length-at-age estimates
and the standard deviations of length-at-age were comparable
between models, except for the oldest age/plus group, where
the wham model estimated a larger mean length than SS3
(Figure 5b). The growth rate and asymptotic length estimated
by wham were smaller and larger than the SS3 model, re-

spectively (Supplementary Table S2). The estimates of mean
catchability were similar between models, and the catchabil-
ity parameter of the longline survey (LLSrv) varied over time
following the estimated environmental covariate (Supplement
ary Figures S12 and S13). Selectivity varied similarly over the
years among models (Supplementary Figure S14).

Moreover, unbiased growth parameter estimates and low
precision for the standard deviations of lengths at age 1 and
A (SDq and SD g, see online Appendix C, Figure 6) were de-
tected. Initial abundance had a lower precision than mean re-
cruitment, and mean recruitment was estimated with a slight
positive bias (~ +3%). F and SSB estimates were unbiased be-
fore 2017 and had low precision during the early modelling
period. After 2017, there was a small overestimation of SSB
and underestimation of F (~8%).

EBS pacific cod

The WHAM models produced larger mean SSB estimates
and uncertainty than the SS3 model (~ +15%; Figure
7a). The mean length-at-age 1 (L) calculated using the
WHAM models fluctuated over time between 9 and 15 cm,
and values from WHAM were slightly larger than the
SS3 estimates (~1.5 cm; Figure 7b). The temporal vari-
ability in L; followed the same trend among models,
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especially after 1995. L; from the wham_ecov model fol-
lowed a temporal trend similar to the environmental covari-
ate before 1990. The environmental process predicted using
the wham_ar1l model matched the observations quite well,

but the wham_ecov did not, especially between 1983 and
1998 (Figure 7c). The catchability parameter was smaller
for the WHAM models, which explains the difference in
SSB values (Supplementary Table S3). Selectivity varied
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similarly over the years among models (Supplementary Figur
e S15).

AIC values were generally lower for the wham_ar1 model
for different values of observation standard error for the
environmental time series (Supplementary Table S4). More-
over, a smaller observation standard error increased the AIC
for the wham_ecov models. We also observed that reducing
the observation standard error forced wham_ecov to follow
the observed environmental time series trend more closely
(Supplementary Figure S16).

SSB bias and precision did not change after 45 replicates in
the simulation experiment (Supplementary Figure S16), and
unbiased and precise growth parameter estimates were ob-
served (Figure 8). Initial abundance and fishing mortality had
low precision and positive bias (~ +10%, Figure 8). F and SSB
estimates were unbiased in all years but showed low precision
during the first years (Figure 8).

Discussion

SSMs have become more popular in recent years, but their
use has been limited to fish stocks reliant only on indices of
abundance or indices of abundance and age compositions. We
present a set of approaches (parametric and nonparametric)

to model somatic growth through changes in the population
mean length- or weight-at-age and fitted to size-specific data.
These features were implemented in WHAM and then applied
to three important stocks in Alaska. WHAM can now incor-
porate size-based information (e.g. marginal length compo-
sitions, CAAL data) to estimate growth parameters. Here, we
found that WHAM estimates were similar to those from other
widely used modelling platforms (SS3 and bespoke ADMB
models). The main advantage of using the state-space ap-
proach is that random effects can be predicted with multiple
structures and multiple process errors can be estimated simul-
taneously, thus providing an improved characterization of un-
certainty (Thorson and Minto, 2015). This extended version
of WHAM is the first flexible framework for estimating time-
varying length-at-age in a state-space stock assessment frame-
work, and standard WHAM features (e.g. projections, one-
step ahead residuals, environmental linkages) are also avail-
able.

Growth modelling techniques in an SSM have been lim-
ited thus far. Zhang and Cadigan (2022) developed an age-
and length-structured statistical catch-at-length model that
allowed the inclusion of catch-at-length data and modelled
time-invariant growth using a transition matrix. On the other

hand, Miller et al. (2018) is the only study that modelled
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Figure 7. EBS Pacific cod. WHAM models assumed an observation error standard deviation of 0.2 for the environmental time series. (a) Mean spawning
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(b) Annual variability in the mean length-at-age 1 estimated by the WHAM models. (c) Estimates of the true environmental covariate (continuous line)
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shown in black points and bars, respectively. (d) Estimates of the true environmental covariate (continuous line) and 95% confidence intervals (coloured
area) from the wham_ecov model. Observed environmental covariate and associated observation error are shown in black points and bars, respectively.

growth variation in a SSM using an environmental index
as a driver of changes in the population mean size-at-age.
Marginal length compositions are commonly included in in-
tegrated models as a source of information for growth. How-
ever, caution should be taken when using these data since they
also include the effects of selectivity, fishing mortality, and re-
cruitment (Francis, 2016; Punt, 2023). Size-at-age information
can be used for parameter estimation in the form of CAAL
data, which are paired age and length observations that are
treated as a measure of the age distribution for a specific length
class (Lee et al.,2019). CAAL data are particularly useful since
they lead to an accurate characterization of growth as long as
they are representative of the age structure of the stock (Lee
et al., 2019). Another improvement is that ageing error ma-
trices can now be incorporated in WHAM. Ageing error oc-
curs when the age estimated from reading hard structures (e.g.
otoliths) differs from the true age, and can have a substantial
impact on model estimates and management decisions (Punt
et al., 2008; Richards et al., 1992; Reeves, 2003).

The internal modelling of growth variability in assessments
has become more frequent in recent years. Stawitz et al. (2019)
found that the misspecification of growth can result in posi-
tive bias in management quantities (e.g. stock depletion), and

that this bias is mitigated when growth variability is accounted
for. Moreover, they recommended modelling growth variabil-
ity only in data-rich situations. Likewise, Correa et al. (2021)
and Lee et al. (2018) found a large bias, especially for short-
lived species, in SSB estimates when annual or cohort-specific
temporal variability in growth was ignored. While the growth
modelling framework presented here is similar to those im-
plemented in other modelling platforms (e.g. Stock Synthe-
sis), it is novel in several ways. For example, the process er-
ror variance can now be estimated by integrating out the ran-
dom effects and maximizing the marginal likelihood, which is
currently considered as best practice (Punt, 2023). This fea-
ture allows us to avoid the PML approach, which usually
subjectively fixes the process error variance. In addition, we
can now model the population mean length or weight-at-age
non-parametrically as is already the case for some model com-
ponents in similar assessment models (Xu et al., 2019; Stock
et al., 2021). Further exploration is necessary to fully under-
stand the performances of these new approaches under diverse
circumstances.

Selecting an environmental covariate to drive changes in
growth in an assessment model is a crucial decision. WHAM
assumes observation error in an environmental covariate such
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that the population parameter (e.g. growth rate) is linked to
the predicted latent state of the environmental variable rather
than the observed values (Stock and Miller, 2021). Environ-
mental observations and predictions were quite similar in the
wham_ar1l model for EBS Pacific cod since there were no
constraints (i.e. no link to any biological parameter). Con-
versely, the wham_ecov model found differences between en-
vironmental observations and predicted states, which could
be caused by several factors. First, a temperature index was
selected because there is evidence of temperature effects on
the growth of Pacific cod. However, there may be other rel-
evant variables (e.g. prey density, oxygen) that we ignored.
Second, the calculation of the temperature index, which is an

average from the entire eastern Bering Sea, might not be rep-
resentative of the temperature conditions in the habitat of Pa-
cific cod. Third, the linking equation (Equation (16)) may not
be appropriate; therefore, alternative equations need to be ex-
plored due to their impacts on model results (du Pontavice
et al., 2022). Finally, we observed that the assumed observa-
tion standard error impacted the wham_ecov model results. A
smaller error led to degraded model fits (Supplementary Tab
le S4), which means that the observed environmental covari-
ate conflicted with other data inputs informative to growth
(e.g. marginal length compositions). This result was evident
after 1985 when the input sample sizes for the length compo-
sitions were higher (Figure 7d). Future work could explore
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estimating the observation standard error as a parameter,
which is an option in WHAM.

Based on parametrizations already implemented for other
model components in WHAM, we developed a nonparamet-
ric approach to model changes in population mean length- or
weight- at-age. In our case, the terms u; or wy, (Equations
(8) and (14)) may be externally calculated from a parametric
growth function or observed data and then fixed, or internally
estimated as fixed effects while predicting 8, , as random ef-
fects. This approach differs from the semiparametric approach
of Thorson and Taylor (2014) and Xu et al. (2019). For ex-
ample, for selectivity, the semiparametric approach is based on
a parametric (e.g. logistic equation) and a nonparametric part
(e.g. random effects on age and year), and the estimation of the
fixed effects parameters and prediction of the random effects
occurs simultaneously (Xu et al., 2019). Evidence suggests
that semiparametric structures will revert to the parametric
form when data are uninformative but will approximate the
data-generating process when data are highly informative (i.e.
based on a representation theorem, Klein, 1976). We found
that the estimated population mean weight-at-age from the
nonparametric approach behaved as described for the semi-
parametric approach for GOA walleye pollock, i.e. reverting
to the parametric for (i, ) when no observed mean weights-
at-age were available and approximating the observed data
when there was limited observation error.

A common practice in age-structured assessment models
that do not model growth internally is to use EWAA data
to calculate biomass-at-age from abundance-at-age. However,
this approach assumes that the available weight-at-age infor-
mation is known without error, an assumption that is not met
in most, if not all, cases (Kuriyama et al., 2016). We showed
for GOA walleye pollock that the EWAA input could be
treated as data while estimating the population mean weight-
at-age through the prediction of random effects with two
covariance structures (independent and correlated over ages
and years). The two configurations led to similar results, but
the more complex model with correlated random effects had
the lowest AIC (AAIC = 172). The improved performance of
models with correlated population processes has also been
found previously. For example, Stock ef al. (2021) found
that imposing a 2DAR(1) structure on natural mortality im-
proved model fit and reduced retrospective patterns for SSB, F,
and recruitment for the Southern New England-Mid Atlantic
(SNEMA) yellowtail flounder (Limanda ferruginea). In addi-
tion, Xu et al. (2019) and Nielsen and Berg (2014) modelled
correlation by age and year in selectivity in age-structured
models, leading to an improved model performance. Finally,
Stock and Miller (2021) found improved model performance
and reduced retrospective bias when predicting 2DAR(1) ran-
dom effects on abundance-at-age in a simulation experiment
for several life histories. Recently, Cheng et al. (2023) pro-
posed a parametrization to account for year, age, and cohort
autocorrelation in mean weight-at-age and other biological
processes. This method offers a new approach to model time
variability in weight or length-at-age and could be tested in
assessment frameworks in the future.

Forecasting is an important part of the fisheries manage-
ment process. When forecasting, assessments typically use
data and estimates from the last year or an average from recent
years for the projection period. This approach assumes that
near-future conditions will not vary from the present, an as-
sumption that is hardly ever met. Autoregressive processes in
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stock assessment models are valuable when forecasting since
they can be used to propagate uncertainty in short-term pro-
jections. Recruitment is one of the main processes when mak-
ing projections (Maunder and Thorson, 2019; Van Beveren
et al., 2021). However, growth is commonly assumed to be
time-invariant despite being an important contributor to stock
biomass (Stawitz and Essington, 2018). Stock et al. (2021)
found an improved consistency of biomass projections for
SNEMA vyellowtail flounder when survival and natural mor-
tality had a 2D (age and year) autocorrelation structure. Like-
wise, du Pontavice et al. (2022) improved short-term projec-
tions and uncertainty representation of recruitment and SSB
for the SNEMA yellowtail flounder by accounting for forecast
uncertainty of the Cool Pool Index modelled as an autoregres-
sive process. Mean SSB and uncertainty in projection years for
GOA walleye pollock were larger in the model with a 2D auto-
correlated population mean weight-at-age than in the model
that used EWAA. These changes may influence the manage-
ment advice, as there is considerable interannual variability in
size-at-age for this stock.

For all our case studies, we found moderate to minor
differences in model estimates, which can partially be ex-
plained by the structural dissimilarities between platforms
(e.g. SS3 vs. WHAM). For example, the estimation of the
initial abundance-at-age is done differently in WHAM and
SS3. In WHAM, we estimated an initial abundance-at-age 1
(Ny.1) and then, using an initial F (F;), we calculated the initial
abundance-at-age a using the exponential decay function from
Nji 1. In contrast, in SS3, the initial abundance-at-age a was
calculated using average recruitment from an “early period”
(Methot and Wetzel, 2013). This distinction could explain the
difference in SSB estimates between WHAM and SS3, espe-
cially during the early modelling period. Future studies could
explore initializing the WHAM and SS3 models at an earlier
year to explore if this results in more similar biomass trajec-
tories by the first year of substantial data. Another dissimi-
larity is how the process error for selectivity is parametrized.
WHAM shares the process error variance across all the se-
lectivity parameters for a given fleet, whereas SS3 assumes a
different process error variance for each selectivity parameter.
We expect that the extension presented in this study may make
WHAM a potential platform to assess the status of a broader
range of fish stocks in the future.

Conclusion

We provided a novel framework to model growth and size-at-
age in SSMs, implemented it in WHAM, and applied it to three
groundfish stocks in Alaska. Our study presents, for the first
time, an SSM that is able to model growth using size-specific
information (e.g. marginal length compositions, CAAL), in ad-
dition to the features already developed in previous studies
for SSM (e.g. use of environmental information, projections;
Stock and Miller, 2021). These new modelling approaches ex-
pand the applicability of SSM and their benefits (e.g. more
realistic uncertainty, estimation of process error, reduction of
retrospective patterns) to more stocks worldwide. Specifically,
our case studies showed that WHAM can now be used as a
platform for assessing some fish stocks in Alaska; however, we
suggest further examination of the structural differences be-
tween WHAM and the assessment platforms currently used
for Alaskan fish stocks.
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