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State-space assessment models (SSMs) ha v e garnered attention recently because of their ability to estimate time variation in biological and 
fisheries processes such as recr uitment, nat ural mort alit y, catchabilit y, and selectivit y. Ho w e v er, current SSMs cannot model time-varying growth 
internally nor accept length data, limiting their use. Here, w e e xpand the Woods Hole Assessment Model to incorporate new approaches to 
modelling changes in growth using a combination of parametric and nonparametric approaches while fitting to length and weight data. We 
present these new features and apply them to data for three important Alaskan stocks with distinct data and model needs. We conduct a “self- 
test” simulation experiment to ensure the unbiasedness and statistical efficiency of model estimates and predictions. This research presents 
the first SSM that can be applied when length data are a k e y source of inf ormation, v ariation in gro wth is an essential part of the dynamics of the 
assessed stock, or when linking climate variables to growth in hindcasts or forecasts is rele v ant. Consequently, the state-space approach and 
growth estimation can be applied to more fish stocks worldwide, facilitating real-world applications and implementation of simulation experiments 
f or perf ormance e v aluation of SSMs f or the man y stocks whose assessments rely on length data. 
Keywords: growth, random effects, size-at-age, weight-at-age, Woods Hole Assessment Model (WHAM). 
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Introduction 

Variation in biological (e.g. recruitment, natural mortality,
growth) and fishery (e.g. selectivity, fishing pressure) processes 
has frequently been documented for fish stocks (Thorson et al.,
2015b ; Aeberhard et al., 2018 ). Somatic growth (“growth”
hereafter) is the increase in the size or weight of a fish through- 
out its lifespan. Growth may vary among fish, time, and space,
and this variability is evident for several fish stocks and is a 
critical driver of fluctuations in population biomass (Stawitz 
and Essington, 2018 ). Some important factors driving growth 

variability are (1) conditions during early life stages (Cian- 
nelli et al., 2020 ): larval size variability (which affects the 
size of older stages), (2) genetic effects (Berg et al., 2018 : 
slow-growing females will produce slow-growing offspring), 
(3) density-dependence (Rijnsdorp and van Leeuwen, 1996 : 
higher abundance will increase competition and potentially 
decrease growth rates), (4) fishing pressure (Lester et al., 2014 ; 
Wilson et al., 2019 : fishing may remove fast-growing fish,
therefore, decrease population size-at-age over time), and (5) 
environmental conditions (Kreuz et al., 1982 ; Baudron et al.,
2014 : temperature, prey density, and quality are factors im- 
pacting growth rates). Growth in stock assessment models 
is modelled as changes in mean size- or weight-at-age at the 
population level. Historically, variability in mean size-at-age 
has been ignored in models based on the integrated analysis 
paradigm. Nevertheless, increasing evidence shows that this 
practice may lead to biased model estimates (Correa et al.,
2021 ; Punt et al., 2015 ; Lee et al., 2018 ), and the modelling 
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f growth variability in fishery assessment models based on 

he integrated analysis paradigm has become more common 

n recent years. 
Currently, there are two common strategies to account for 

emporal variability in growth in a stock assessment: (1) pre-
pecifying weight-at-age based on empirical data (empirical 
eight-at-age; EWAA), or (2) modelling temporal variability 

n the parameters of a growth equation. The former strategy
s more accurate in data-rich situations and does not require
dditional parameters to be estimated (Kuriyama et al., 2016 ).
owever, EWAA is assumed to be perfectly known and does

ot separate changes in mean length-at-age and the morpho- 
etric condition of the length–weight relationship. How to 

andle missing weight observations (e.g. a missing survey) is
nclear, and any uncertainty in EWAA is ignored. The sec-
nd approach models variation in mean length-at-age and 

ses the length–weight relationship to estimate the popula- 
ion mean weight-at-age. Estimating growth parameters re- 
uires informative data such as marginal length compositions 
r conditional age-at-length (CAAL; Lee et al., 2019 ) and may
e computationally demanding and challenging since model 
redictions of size-specific data are also affected by other 
odel components such as selectivity . Traditionally , mod- 

lling temporal variability in growth parameters has been per- 
ormed using the “penalized maximum likelihood” (PML) ap- 
roach, which estimates penalized deviations εy ( 0 , σ 2 

ε ) from 

he mean parameter while subjectively fixing or iteratively 
uning the penalty term σ 2 (e.g. Methot and Taylor, 2011 ), or
ε
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pproximating it (Thorson et al., 2015a ). In some cases, an
nvironmental index, commonly assumed to be known with-
ut error, is included in the stock assessment allowing growth
arameters to vary over time through a linking equation (Lee
t al., 2018 ). 

State-space assessment models (SSMs) are a type of stock
ssessment that separate and estimate the process error in the
opulation dynamics and the observation error in the data
Aeberhard et al., 2018 ). Stochastic processes affecting the un-
bserved temporal dynamics of a stock are accounted for by
he introduction of random effects. In SSMs, the penalty terms
re estimated as variance parameters that constrain the as-
ociated random effects, while parameter estimation involves
aximizing the marginal likelihood (Skaug and Fournier,
006 ; Aeberhard et al., 2018 ). The state-space approach pro-
uces more realistic levels of uncertainty compared to the
ML approach, and the resulting assessments exhibit smaller
etrospective patterns (Miller and Hyun, 2018 ; Stock et al.,
021 ). The origin of these models is not recent (Sullivan, 1992 ;
udmundsson, 1994 ); however, their use has been limited
ue to the computational burden when using the common
odelling platform ADMB (Fournier et al., 2012 ). The devel-
pment of Template Model Builder (TMB; Kristensen et al.,
016 ), which performs the Laplace approximation efficiently
nd automatically, has allowed more extensive use of SSMs
uring the last decade. Currently, more than 20 official fish
tock assessments by the International Council for the Explo-
ation of the Sea are conducted using a state-space framework
Nielsen and Berg, 2014 ; Aeberhard et al., 2018 ), and its use is
rowing on the east coast of North America (Cadigan, 2016 ;
iller et al., 2016 ; Miller and Hyun, 2018 ; Stock et al., 2021 ).

ome common SSM platforms are SPiCT, which relies on in-
ices of abundance (Pedersen and Berg, 2017 ), and SAM and
he Woods Hole Assessment Model (WHAM), which use in-
ices of abundance and age data (Nielsen and Berg, 2014 ;
tock and Miller, 2021 ). 

WHAM is a state-space age-structured assessment model
oded in TMB (Stock and Miller, 2021 ; Stock et al., 2021 )
nd has been applied to data for several stocks off the U.S.
ast coast (Stock et al., 2021 ; du Pontavice et al., 2022 ;
egault et al., 2023 ), where extensive age data (e.g. age com-
ositions) are available for many years. WHAM currently
ccounts for variability in growth by incorporating annual
WAA information, and internal growth modelling using size
e.g. marginal length compositions) or size-at-age information
e.g. CAAL data) for parameter estimation is unavailable. In
eneral, growth modelling in SSMs has not been thoroughly
xplored (but see Miller et al., 2018 ), and research is needed
o understand the performance of these SSMs when growth
ariability is estimated. Furthermore, the absence of growth
odelling approaches and the inability to include size-specific

nformation have limited the use of SSMs in other fishery ju-
isdictions where age information is not extensive. 

In this study, we aimed to (1) document how parametric and
onparametric modelling of growth can be included in state-
pace age-structured stock assessment models, (2) apply these
pproaches to three case studies in Alaska: walleye pollock
 Gadus chalcogrammus ) in the Gulf of Alaska (GOA), Pacific
od ( Gadus macrocephalus ) in the GOA, and Pacific cod in the
astern Bering Sea (EBS) based on a WHAM implementation,
nd (3) for each of the models in the case studies, conduct
 “self-test” simulation to assure the unbiasedness of growth
odel estimates. To our knowledge, this is the first study that
resents an SSM that accounts for growth variation and uses
ize data for parameterization. The new extension of stock
ssessment will allow assessment analysts to apply SSMs to
 broader set of species, including data-moderate fish stocks
ith few or no years of age compositions. It will also allow

tock forecasts to propagate climate impacts and uncertainty
bout future growth scenarios. 

ethods 

ection “Growth modelling” outlines how parametric growth
an be modelled in a state-space stock assessment, Section
Overview of the Woods Hole Assessment Model” briefly
verviews some key features of WHAM, Section “Case stud-

es” describes the case studies, and Section “Simulation exper-
ment”outlines the simulation experiment. The source code of
he implemented modelling features can be found at https://gi
hub.com/timjmiller/ wham/tree/ growth (tested version, used
n this study) and https:// github.com/GiancarloMCorrea/ wh
m/tree/growth (in-development version). The code to repli-
ate the case studies and simulation experiments can be
ound at https:// github.com/GiancarloMCorrea/ AKWHAM .
he software R (R Core Team, 2022 ) and the ggplot2 pack-
ge (Wickham, 2016 ) were used for analyses and to produce
gures. 

rowth modelling 

ariation in growth is one mechanism that can explain
hanges in population mean length- or weight-at-age. The
ections below outline how we model the mean length- and
eight-at-age and include random effects on model param-

ters ( Figure 1 ). Online Appendix A describes the data in-
uts that are used to inform growth estimation, and online
ppendix B the likelihood components. Additionally, linking

hese growth parameters to environmental variables is also
ossible, as described by Stock and Miller (2021) for processes
ther than growth. 

arametric modelling of mean length-at-age 
e first introduce the feature used to specify a parametric
odel of mean length-at-age. The basic growth equation is

he Richards’ equation (Richards, 1959 ), with linear growth
elow a reference age ( ̃  a ), based on the Schnute parameter-
zation (Schnute, 1981 ). For the first year ( y = 1 ), the mean
ength-at-age a at the start of the year ( ̃  L y,a ) is calculated as 

˜ L y,a = 

{ 

L 

′ 
min + ba for a ≤ ˜ a (
L 

γ
∞ 

+ 

(
L 

γ

˜ a − L 

γ
∞ 

)
exp 

(−k ( a − ˜ a ) 
))1 /γ

for a > 

˜ a 
, (1)

here b = ( L ˜ a − L 

′ 
min ) / ̃  a , L ˜ a is the mean length-at-age ˜ a , L 

′ 
min

s the lower limit of the smallest length bin in the population
ssumed in the model, L ∞ 

is the asymptotic length, and k is
he growth rate. The linear growth below age ˜ a is because, in
ost cases, there is little information about the actual size-

t-age trajectory for very young animals (Methot and Wetzel,
013 ). 
The von Bertalanffy equation is Equation (1) with γ = 1.

or y > 1 , ˜ L y,a is calculated as 

˜ L y,a = 

{ 

L 

′ 
min + ba for a ≤ ˜ a 

( ̃ L 

γ

y −1 ,a −1 + 

(
˜ L 

γ

y −1 ,a −1 − L 

γ
∞ 

) (
exp 

(−k 
) − 1 

)
) 
1 /γ

for a > 

˜ a 
. (2)

https://github.com/timjmiller/wham/tree/growth
https://github.com/GiancarloMCorrea/wham/tree/growth
https://github.com/GiancarloMCorrea/AKWHAM
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Figure 1. Data (white blocks) used to estimate growth. Population mean length-at-age (LAA, red blocks) can be modelled using a parametric (von 
Bertalanffy or Richards equation) or nonparametric LAA approach. Population mean weight-at-age (WAA, blue blocks) can be modelled using an empirical 
weight-at-age (nonparametric WAA) approach or using a length–weight (L-W) relationship (which uses mean length-at-age information). 
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Mean length-at-age a at any fraction θ ∈ [ 0 , 1 ] of year y 
( ̃  L y,a + θ ) is calculated according to: 

˜ L y,a + θ = ( ̃  L 

γ

y −1 ,a −1 + 

(
˜ L 

γ

y −1 ,a −1 − L 

γ
∞ 

) (
exp 

(−kθy 
) − 1 

)
) 
1 /γ

. 

(3) 

Random effects ( δ) can be predicted on the mean param- 
eters ( μ) in logarithmic scale in Equations (1 –3 ). They are 
assumed to be normally distributed with zero mean but au- 
tocorrelated over the years or cohorts: 

log (L ∞ t ) = μL ∞ 

+ δ1 ,t , (4a) 

log 
(
k t 

) = μk + δ2 ,t , (4b) 

log (L ˜ a t ) = μL ˜ a + δ3 ,t , (4c) 

where t represents years or cohorts. The random effects, on 

a given growth parameter, can be first-order autoregressive 
AR(1): 

δt | δt−1 ∼ N 

(
ρδt−1 , σ

2 
G 

)
(5) 

with initial condition: 

δ1 

( 

0 , 
σ 2 

G 

1 − ρ2 

) 

(6) 

The covariance is 

Cov ( δt , δ ˜ t ) = 

σ 2 
G 

ρ| t− ˜ t | (
1 − ρ2 

) , (7) 

where σ 2 
G 

and ρ are the AR(1) variance and correlation coeffi- 
cient over years or cohorts, respectively. Including first-order 
autocorrelation in the model formulation has been shown to 

improve forecast skill in other demographic processes (John- 
son et al., 2016 ), but has not, to our knowledge, been explored 

for growth parameters. 

Nonparametric modelling of mean length-at-age 
We also introduce a nonparametric approach to model mean 

length-at-age. This approach does not use conventional para- 
metric growth equations. Instead, we assume the average pop- 
ulation mean length-at-age ( ̃  L a ) on January 1st are parameters 
(i.e. fixed effects). To model time variation, a random effect 
( δa,y ) can be predicted on 

˜ L a for each age a in logarithmic scale 
 μ ˜ L a ) to allow for a correlated (smoothed) process by age and
ear: 

log 
( ˜ L y,a 

) = μ ˜ L a + δa,y . (8) 

The random effects matrix � has a two-dimensional (2D) 
tationary AR(1) structure distributed as 

vec ( �) ∼ MV N ( 0 , �) , (9) 

here vec (�) = ( δ1 , 1 , . . . , δ1 ,Y , . . . , δA, 1 , . . . , δA,Y ) 
′ is the vec- 

or of random effects, such that A and Y are the number
f ages and years, respectively. The covariance matrix ( �) of
ec( �) is 

� = Cov 
(
δa,y , δ ˜ a , ̃ y 

) = 

σ 2 
G 

ρ | a − ˜ a | 
age ρ

| y − ˜ y | 
year (

1 − ρ2 
age 

) (
1 − ρ2 

year 

) , (10) 

here σ 2 
G 

, ρage , and ρyear are the estimated AR(1) variance and
orrelation coefficients by age and year, respectively. The mean 

ength-at-age a at any fraction θ of year y ( ̃  L y,a + θ ) is based on
inear interpolation between 

˜ L y,a and 

˜ L y +1 ,a +1 : 

˜ L y,a + θ = 

˜ L y,a + 

( ˜ L y +1 ,a +1 − ˜ L y,a 
)
θ. (11) 

This parametrization is identical to the M -at-age avail-
ble in WHAM (see Stock and Miller, 2021 ) and acts like a
moother across the mean length-at-age matrix with the con- 
traints estimated from the data. This approach has three note-
orthy features: it can predict negative changes in the size-at-
ge of a cohort (resulting from processes affecting size-at-age 
esides growth), naturally accounts for missing data, and can 

e projected into the future as in other processes in an SSM.
ecause the smoother complexity is related to the information 

ontained in the data, and there is no parametric growth equa-
ion, we refer to this as “nonparametric,” recognizing that this 
erm is not consistently defined in the statistical literature. 

arametric modelling of mean weight-at-age 
ext, we introduce a parametric model of mean weight-at- 

ge. This approach uses the allometric length–weight relation- 
hip to calculate the weight ( w ) in kg for a given population
ength ( l ) in cm: 

w l = �1 l �2 , (12) 

here �1 and �2 are the weight coefficient and exponent, re- 
pectively. Random effects ( δ) can also be predicted on these
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arameters by year or cohort, and follow the structure shown
n Equations ( 4 –7 ). The population mean weight-at-age can
hen be predicted using the age-length transition matrix: 

W y,a = 

∑ 

l 

ϕ y,l,a w l , (13) 

here the age-length transition matrix ( ϕ y,l,a ) represents the
ariability in fish length within an age (Methot and Wetzel,
013 ) (online Appendix C). 

onparametric modelling of mean weight-at-age 
ast, we introduce a nonparametric approach for mean
eight-at-age. As for the nonparametric modelling of mean

ength-at-age, the parameters are the population mean weight-
t-age ˜ W a (January 1st) with random effects ( δ) to allow for
emporal variability: 

log 
( ˜ W y,a 

) = μ ˜ W a 
+ δa,y . (14) 

Random effects have the same structure as shown in Equa-
ions ( 9 ) and ( 10 ). The mean weight-at-age a at any fraction
of year y ( ˜ W y,a + θ ) can be calculated as 

˜ W y,a + θ = 

˜ W y,a (G y,a ) 
θ
, (15) 

where G y,a is the growth rate and is calculated as G y,a =
˜ 
 y +1 ,a +1 / ˜ W y,a . This parametrization approximates the sea-

onal non-linearity of the weight–age relationship without re-
uiring extra parameters. The calculation of predicted quan-
ities is described in online Appendix D. Additionally, we also
dded selectivity-at-length functions given their importance
hen modelling growth (online Appendix E). As discussed
y Francis (2016) , size-based selectivity would make a sam-
le random at size, while an age-based selectivity would be
andom at age (i.e. only the sizes of age a are considered ran-
om), impacting the predicted age–size data by the assessment
odel and the estimation of growth parameters. Moreover,

ize-based selectivity also influences the variation in mean size-
t-age, which can be confounded with variation in growth
Francis, 2016 ). 

verview of the WHAM 

HAM was built based on the structure of the Age-
tructured Assessment Program (ASAP; Miller and Legault,
015 ) and uses landings, indices of abundance, age composi-
ions, environmental covariates, and EWAA data for param-
ter estimation. It implements the prediction of random ef-
ects on inter-annual transitions in numbers-at-age, natural
ortality , catchability , selectivity , and environmental covari-

tes. Input environmental covariates are treated as observa-
ions (with error), while true (unobserved) latent states can
e treated as random effects. Several options are available
o model the structure of random effects, including indepen-
ent, AR(1) or random walk, and a 2D first-order autoregres-
ive 2DAR(1) (Cadigan, 2016 ). These options can be applied
o annual effects and different model configurations can be
ompared using the Akaike information criterion (AIC, Burn-
am and Anderson, 2002 ). WHAM assumes the separability
f fishing mortality-at-age into annual fully selected fishing
ortalities (estimated as fixed effects) and selectivity-at-age

several random effects structures available). Short-term pro-
ections and one-step-ahead residual calculations (Trijoulet et
l., 2023 ) can be conducted using WHAM. Projections are es-
ecially useful for models with random effects because the
emporally correlated process can continue into the future.
HAM is implemented in TMB and is available as an R pack-

ge (Miller and Stock, 2020 ). 

ase studies 

he new approaches to modelling growth presented in Section
Growth modelling” were applied to three stocks in Alaska,
SA, with distinct size data and assumptions about growth

see Figure 2 and Table 1 for a summary of data and model
onfigurations). We compared the spawning stock biomass
SSB) and other relevant quantities between the official assess-
ents (i.e. those adopted by the North Pacific Fishery Man-

gement Council) and the WHAM versions. 

alleye pollock in the GOA 

e used the data and model configuration of the 2021 stock
ssessment (Monnahan et al., 2021 ) for a case study of wall-
ye pollock in the GOA. The official assessment was imple-
ented in ADMB (Fournier et al., 2012 ) and contained in-

ormation for one fishery and four surveys. Selectivity was
ge-based for all fleets (fishery and surveys), and the param-
ters controlling the initial slope and inflection point in the
shery double-logistic selectivity varied annually (Monnahan
t al., 2021 ). The Shelikof Strait age 3 + pre-spawner survey
nd Alaska Department of Fish and Game bottom trawl sur-
ey had autocorrelated catchability over time. For all other
urveys, catchability was constant but estimated. EWAA was
sed to account for growth variation and compute expected

ndices and SSB. 
We used the same data and configuration as in the original

ssessment and constructed 3-year projections based on the
shing mortality ( F ) in the terminal year for the projection
eriod. We implemented three configurations in WHAM to
ccount for growth variation: 

1) wham _ ewaa : uses EWAA information assumed to be
known perfectly (as in the original assessment). In the
projection, we use the average EWAA from the last 5
years of the assessment. 

2) wham _ iid: nonparametric modelling of the population
mean weight-at-age (independent random effects by
year and age). The random effects structure was used in
the projection period to calculate the population mean
weight-at-age. 

3) wham _ 2 dar 1 : nonparametric modelling of population
mean weight-at-age (2DAR(1) random effects by year
and age). The random effects structure was used in
the projection period to calculate the population mean
weight-at-age. 

Models wham _ iid and wham _ 2 dar 1 used the EWAA data
rom the Shelikof Strait survey as observations, where the ob-
ervation error was calculated externally and then provided to
he model (see online Appendix B). We used AIC to compare
he two configurations. 

acific cod in the GOA 

e used the data and model configuration for the 2022 stock
ssessment (Model 19.1a, Hulson et al., 2022 ) for this case
tudy. The official assessment was implemented in Stock Syn-
hesis 3 (SS3) (Methot and Wetzel, 2013 ) and included three
sheries and two surveys (bottom trawl and longline). Selec-
ivity was length-based and double-normal for all fleets and
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Figure 2. Data included in the official assessment models and WHAM configurations presented in this study. Circles indicate that data were present for 
a given year, and the circle size is proportional to input sample size, index precision, or catch size for a given row. Each fleet (fishery or surv e y) is 
represented by a different colour. 

Table 1. Summary of model configurations used in WHAM models (GOA = Gulf of Alaska, EBS = eastern Bering Sea). 

GOA Walleye pollock GOA Pacific cod EBS Pacific cod 

Model information and compositional data 
Number of ages 10 10 20 
Minimum, maximum, and 
length bin width (cm) 

– 0.5 – 116.5 – 1 3.5 – 119.5 – 1 

Mean weight-at-age 
observations 

1986–2021 – –

Compositional data Marginal age compositions Conditional age-at-length, 
marginal length compositions 

Marginal age and length 
compositions 

Parameters 
Natural mortality Age-specific (fixed) Constant with block in 

2014–2016 (estimated) 
Constant (estimated) 

Growth EWAA or nonparametric WAA von Bertalanffy (all parameters 
estimated) 

Richards (all parameters 
estimated) 

Length–weight – Fixed Fixed 
Recruitment Mean recruitment estimated. 

Annual deviates estimated RE 

Mean recruitment estimated. 
Annual deviates estimated PML 

Mean recruitment estimated. 
Annual deviates estimated PML 

Fishing mortality Estimated Estimated Estimated 
Catchability Estimated. Annual deviates 

estimated RE 

Estimated Estimated 

Selectivity Estimated. Annual deviates 
estimated PML 

Estimated. Annual deviates 
estimated PML 

Estimated. Annual deviates 
estimated PML 

Error distribution for age 
compositions 

Multinomial Multinomial Linear-parameterization of 
Dirichlet-multinomial 
Estimated 

Error distribution for length 
compositions 

Multinomial Multinomial Multinomial 

PML = penalized maximum likelihood, RE = Random effects. Data are displayed in Figure 2 . 
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ime-varying for all fisheries and one survey. Growth was
odelled using the classic von Bertalanffy equation and was

ssumed to be time-invariant. The k and L ∞ 

parameters were
stimated with normally distributed priors. The catchability
arameter for the longline survey was linked to an environ-
ental covariate (bottom temperature anomalies), assumed to
e known without error, and hence varied over time. Natural
ortality, M , was constant across ages and estimated for two

ime-blocks: 2014–2016 and all other years. A lognormally
istributed prior was included for M . Ageing error was pre-
pecified, and ageing bias (pre-2008) was estimated across all
eets. 
We implemented the same configuration in WHAM as

n the original assessment. The environmental covariate was
reated as data, assuming a small observation error variance to
pproximate the original assessment. The true environmental
tate was assumed to have an AR(1) structure while estimat-
ng process error (see Stock and Miller, 2021 ). The ageing er-
or matrix from SS3 was included in the WHAM model (see
nline Appendix A). M , k , and L ∞ 

were estimated without
riors due to the current inability in WHAM to place priors
n these parameters. 

acific cod in the EBS 
e used the data and model configuration from the 2022

tock assessment (Model 19.12A, Barbeaux et al., 2022 ) for
 case study of Pacific cod in the eastern and northern Bering
ea. The official assessment was implemented in SS3 and in-
luded information for one fishery and one survey. Selectivity
as length-based and double-normal, and time-varying for
oth fleets. Growth was modelled using the Richards equa-
ion (Equation 2 ). SS3 estimated annual deviates on the mean
ength-at-age 1.5 ( L ˜ a , where ˜ a = 1 . 5 is the reference age) pa-
ameter using a PML approach (assuming mean zero and a
xed σ 2 

L ˜ a 
= 1 . 48 ). Ageing error was pre-specified, and ageing

ias (pre-2008) was estimated across all fleets. 
We included the same information and assumptions as in

he original assessment in our WHAM implementation. The
geing error matrix from SS3 was included in the WHAM
odel. We considered two model configurations to account

or variability in L ˜ a : 

1) wham _ ecov : The mean bottom temperature over the
EBS Pacific cod stock area obtained from the Bering10K
model (Kearney et al., 2020 ) was included and treated
as data. Since observation error variance was not avail-
able, we assumed 0.2 as the observation standard error,
but also evaluated the impacts of choosing 0.01 and 0.1.
The true state was assumed to have an AR(1) structure
and was linked to the L ˜ a parameter based on previous
evidence (Ciannelli et al., 2020 ) by 

L ˜ a y = L ˜ a ∗ exp (βX y ) , (16) 

where X y is the estimated environmental covariate, and β

s the linking parameter estimated as a fixed effect. 
2) wham _ ar 1 : autocorrelated annual random effects were

redicted on the L ˜ a parameter. The process error ( σ 2 
L ˜ a 

) and
he correlation coefficient ( ρ) [see Equations ( 5 )–( 7 )] were es-
imated. The mean bottom temperature index was included as
n the previous configuration while estimating the true state,
ut was not linked to any parameter. 
We calculated AIC to compare the two configurations,
hich is valid only due to the inclusion of the environmen-

al data in both models. 

imulation experiment 

e used the simulation feature of TMB to conduct a self-test
o evaluate the statistical efficiency and quantify any bias in
he growth modelling approaches presented here. Using the
stimated WHAM models presented in the previous section
case studies) as operating models, we generated 100 new
atasets (replicates) without simulating new random effects.
or each replicate, we fitted the simulated data using the base
onfiguration as in the operating model. Selectivity parame-
ers were fixed for the EBS Pacific cod case since its estimation
ed to very low convergence rates. We calculated the relative
rror in initial abundance, mean recruitment, growth param-
ters, SSB, and F . Relative error was calculated as ( ̂  α − α) /α,
here α is the true value in the operating model and ˆ α is the

alue estimated in the replicate. We used the median value of
elative error across replicates as a measure of bias and the
5% simulation interval as a measure of precision. We con-
rmed the appropriateness of 100 replicates by analysing the
hange in bias and precision with increasing the number of
eplicates ( Supplementary Figures S1 –S3 ). 

esults 

OA walleye pollock 

nnual mean SSB estimates were similar among models
 Figure 3 a). Larger differences were observed between 1980
nd 1985, when SSB estimates from the wham _ iid and
ham _ 2 dar 1 models were ∼30% larger than the original as-

essment and wham _ ewaa models. Uncertainty levels were
omparable among models. Projected mean SSB was higher
or wham _ iid and wham _ 2 dar 1 , which also had larger uncer-
ainty than the wham _ ewaa model ( Figure 3 b). Predicted ran-
om effects over time for population mean weight-at-age were
imilar for the wham _ iid and wham _ 2 dar 1 models ( Figure 3 c
nd d). Random effects were very close to zero before 1985
ecause there were no mean weight-at-age data during that
ime period. In both models, random effects increased over
ime until 2010 for older ages and then decreased. Large ran-
om effects were predicted in recent years for younger ages.
he AIC was 2161.1 for the wham _ iid model and 1989.1 for
ham _ 2 dar 1 model, suggesting that weight-at-age was repre-

ented most parsimoniously using autocorrelation among ages
nd years. 

Selectivity varied similarly over the years among models ( Su
plementary Figure S4 ). Catchability estimates were also simi-
ar across models, and the largest differences between the orig-
nal ADMB and WHAM models were for the Shelikof Strait
ge 1 and age 2 survey indices ( Supplementary Table S1 ). Es-
imated population mean weight-at-age closely matched ob-
erved values in the wham _ iid and wham _ 2 dar 1 models, and
stimated uncertainty was low when observation errors were
mall and high when observations were absent, especially for
lder ages and before 1986 ( Supplementary Figures S5 –S8 ).
opulation mean weight-at-age estimates in projection years
ere similar for wham _ iid and wham _ 2 dar 1 , with the latter
odel exhibiting lower uncertainty, as expected given devia-

ions are informed by adjacent years and ages ( Supplementar
 Figure S9 ). 

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
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Figure 3. GOA w alle y e pollock. (a) Mean spawning biomass estimates (SSB) from WHAM configurations and the original assessment) and 95% 

confidence interval (coloured area). (b) Mean SSB and uncert aint y in projection years. The dashed vertical line indicates the last model year (2021). (c) 
Random effects predicted by the wham _ i i d model by age (colours) and year. (d) Random effects predicted by the wha m _ 2 da r1 model by age (colours) 
and year. 
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The initial abundance, mean recruitment, F , and SSB were 
approximately unbiased for all the WHAM configurations 
( Figure 4 ). Precision was lower for the F and SSB time series 
during the first model years, while F was overestimated ( ∼
+ 10%) and SSB underestimated ( ∼ –10%) during 1980–1990 

for all models. The variance of the random effects ( σWAA 

) was 
unbiased for the wham _ iid model but was slightly ( ∼ –6%) 
underestimated for the wham _ 2 dar 1 model. The autocorrela- 
tion parameters were overestimated ( < + 10%), and the mean 

weight-at-age estimates across replicates were unbiased for the 
wham _ iid and wham _ 2 dar 1 models ( Supplementary Figures 
S10 and S11 ). 

GOA pacific cod 

Annual SSB estimates from the wham and SS3 models fol- 
lowed the same trend over time ( Figure 5 a), although the 
wham models estimated consistently higher ( ∼ + 20%) SSB 

than SS3 throughout the model period. SSB uncertainty was 
also equivalent between models. Mean length-at-age estimates 
and the standard deviations of length-at-age were comparable 
between models, except for the oldest age/plus group, where 
the wham model estimated a larger mean length than SS3 

( Figure 5 b). The growth rate and asymptotic length estimated 

by wham were smaller and larger than the SS3 model, re- 
pectively ( Supplementary Table S2 ). The estimates of mean
atchability were similar between models, and the catchabil- 
ty parameter of the longline survey (LLSrv) varied over time
ollowing the estimated environmental covariate ( Supplement 
ry Figures S12 and S13 ). Selectivity varied similarly over the
ears among models ( Supplementary Figure S14 ). 

Moreover, unbiased growth parameter estimates and low 

recision for the standard deviations of lengths at age 1 and
 ( SD 1 and SD A 

, see online Appendix C, Figure 6 ) were de-
ected. Initial abundance had a lower precision than mean re-
ruitment, and mean recruitment was estimated with a slight
ositive bias ( ∼ + 3%). F and SSB estimates were unbiased be-
ore 2017 and had low precision during the early modelling
eriod. After 2017, there was a small overestimation of SSB
nd underestimation of F ( ∼8%). 

BS pacific cod 

he WHAM models produced larger mean SSB estimates 
nd uncertainty than the SS3 model ( ∼ + 15%; Figure
 a). The mean length-at-age 1 ( L 1 ) calculated using the
HAM models fluctuated over time between 9 and 15 cm,

nd values from WHAM were slightly larger than the 
S3 estimates ( ∼1.5 cm; Figure 7 b). The temporal vari-
bility in L 1 followed the same trend among models,

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
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Figure 4. Results of the simulation experiment for GOA Walleye pollock. Relative error of key quantities: initial abundance at age 1 ( N 1 , 1 ), mean 
recruitment ( ̄R ), annual fishing mort alit y, and SSB. Variance and autocorrelation parameters of random effects (population mean weight-at-age) are also 
displa y ed f or wham _ i i d and wham _ 2 d ar1 . The dark and light areas represent the 50 and 95% quantiles, respectively. The black line is the median. 

Figure 5. GOA Pacific cod. (a) Mean spawning biomass (SSB) (continuous line) and 95% confidence interval (coloured area) estimated by the original 
assessment (SS3) and the WHAM model (wham). (b) Mean length-at-age (continuous line) and associated standard deviations (coloured area) estimated 
by the original assessment (SS3) and WHAM. 
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specially after 1995. L 1 from the wham _ ecov model fol-
owed a temporal trend similar to the environmental covari-
te before 1990. The environmental process predicted using
he wham _ ar 1 model matched the observations quite well,
ut the wham _ ecov did not, especially between 1983 and
998 ( Figure 7 c). The catchability parameter was smaller
or the WHAM models, which explains the difference in
SB values ( Supplementary Table S3 ). Selectivity varied

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data


Time-varying growth in state-space stock assessments 9 

Figure 6. Results of the simulation experiment for GOA Pacific cod. Relative error of key quantities: initial abundance at age 1 ( N 1 , 1 ), mean recruitment 
( ̄R ), annual fishing mort alit y, and SSB. R elativ e error for growth parameters is also displayed. The dark and light areas represent the 50 and 95% 

quantiles, respectively. The black line is the median. 
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similarly over the years among models ( Supplementary Figur 
e S15 ). 

AIC values were generally lower for the wham _ ar 1 model 
for different values of observation standard error for the 
environmental time series ( Supplementary Table S4 ). More- 
over, a smaller observation standard error increased the AIC 

for the wham _ ecov models. We also observed that reducing 
the observation standard error forced wham _ ecov to follow 

the observed environmental time series trend more closely 
( Supplementary Figure S16 ). 

SSB bias and precision did not change after 45 replicates in 

the simulation experiment ( Supplementary Figure S16 ), and 

unbiased and precise growth parameter estimates were ob- 
served ( Figure 8 ). Initial abundance and fishing mortality had 

low precision and positive bias ( ∼ + 10%, Figure 8 ). F and SSB 

estimates were unbiased in all years but showed low precision 

during the first years ( Figure 8 ). 

Discussion 

SSMs have become more popular in recent years, but their 
use has been limited to fish stocks reliant only on indices of 
abundance or indices of abundance and age compositions. We 
present a set of approaches (parametric and nonparametric) 
o model somatic growth through changes in the population 

ean length- or weight-at-age and fitted to size-specific data.
hese features were implemented in WHAM and then applied 

o three important stocks in Alaska. WHAM can now incor-
orate size-based information (e.g. marginal length compo- 
itions, CAAL data) to estimate growth parameters. Here, we 
ound that WHAM estimates were similar to those from other
idely used modelling platforms (SS3 and bespoke ADMB 

odels). The main advantage of using the state-space ap- 
roach is that random effects can be predicted with multiple
tructures and multiple process errors can be estimated simul- 
aneously, thus providing an improved characterization of un- 
ertainty (Thorson and Minto, 2015 ). This extended version 

f WHAM is the first flexible framework for estimating time-
arying length-at-age in a state-space stock assessment frame- 
ork, and standard WHAM features (e.g. projections, one- 

tep ahead residuals, environmental linkages) are also avail- 
ble. 

Growth modelling techniques in an SSM have been lim-
ted thus far. Zhang and Cadigan (2022) developed an age-
nd length-structured statistical catch-at-length model that 
llowed the inclusion of catch-at-length data and modelled 

ime-invariant growth using a transition matrix. On the other 
and, Miller et al. (2018) is the only study that modelled

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
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Figure 7. EBS Pacific cod. WHAM models assumed an observation error standard deviation of 0.2 for the environmental time series. (a) Mean spawning 
biomass (SSB) (continuous line) and 95% confidence intervals (coloured area) estimated by the original assessment (SS3) and the WHAM configurations. 
(b) Annual variability in the mean length-at-age 1 estimated by the WHAM models. (c) Estimates of the true environmental covariate (continuous line) 
and 95% confidence intervals (coloured area) from the wha m _ a r1 model. Observed environmental covariate and associated observation errors are 
shown in black points and bars, respectively. (d) Estimates of the true environmental covariate (continuous line) and 95% confidence intervals (coloured 
area) from the w ham _ ecov model. Observed environmental covariate and associated observation error are shown in black points and bars, respectively. 
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rowth variation in a SSM using an environmental index
s a driver of changes in the population mean size-at-age.
arginal length compositions are commonly included in in-

egrated models as a source of information for growth. How-
ver, caution should be taken when using these data since they
lso include the effects of selectivity , fishing mortality , and re-
ruitment (Francis, 2016 ; Punt, 2023 ). Size-at-age information
an be used for parameter estimation in the form of CAAL
ata, which are paired age and length observations that are
reated as a measure of the age distribution for a specific length
lass (Lee et al., 2019 ). CAAL data are particularly useful since
hey lead to an accurate characterization of growth as long as
hey are representative of the age structure of the stock (Lee
t al., 2019 ). Another improvement is that ageing error ma-
rices can now be incorporated in WHAM. Ageing error oc-
urs when the age estimated from reading hard structures (e.g.
toliths) differs from the true age, and can have a substantial
mpact on model estimates and management decisions (Punt
t al., 2008 ; Richards et al., 1992 ; Reeves, 2003 ). 

The internal modelling of growth variability in assessments
as become more frequent in recent years. Stawitz et al. (2019)
ound that the misspecification of growth can result in posi-
ive bias in management quantities (e.g. stock depletion), and
hat this bias is mitigated when growth variability is accounted
or . Moreover , they recommended modelling growth variabil-
ty only in data-rich situations. Likewise, Correa et al. ( 2021 )
nd Lee et al. (2018) found a large bias, especially for short-
ived species, in SSB estimates when annual or cohort-specific
emporal variability in growth was ignored. While the growth
odelling framework presented here is similar to those im-
lemented in other modelling platforms (e.g. Stock Synthe-
is), it is novel in several ways. For example, the process er-
or variance can now be estimated by integrating out the ran-
om effects and maximizing the marginal likelihood, which is
urrently considered as best practice (Punt, 2023 ). This fea-
ure allows us to avoid the PML approach, which usually
ubjectively fixes the process error variance. In addition, we
an now model the population mean length or weight-at-age
on-parametrically as is already the case for some model com-
onents in similar assessment models (Xu et al., 2019 ; Stock
t al., 2021 ). Further exploration is necessary to fully under-
tand the performances of these new approaches under diverse
ircumstances. 

Selecting an environmental covariate to drive changes in
rowth in an assessment model is a crucial decision. WHAM
ssumes observation error in an environmental covariate such
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Figure 8. Simulation experiment for EBS Pacific cod. Relative error of key quantities: initial abundance at age 1 ( N 1 , 1 ), initial fishing mort alit y F 1 , mean 
recruitment ( ̄R ), growth parameters, annual fishing mort alit y, and SSB. The dark and light area represent the 50 and 95% quantiles, respectively. The 
black line represents the median. 
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that the population parameter (e.g. growth rate) is linked to 

the predicted latent state of the environmental variable rather 
than the observed values (Stock and Miller, 2021 ). Environ- 
mental observations and predictions were quite similar in the 
wham _ ar 1 model for EBS Pacific cod since there were no 

constraints (i.e. no link to any biological parameter). Con- 
versely, the wham _ ecov model found differences between en- 
vironmental observations and predicted states, which could 

be caused by several factors. First, a temperature index was 
selected because there is evidence of temperature effects on 

the growth of Pacific cod. However, there may be other rel- 
evant variables (e.g. prey density, oxygen) that we ignored.
Second, the calculation of the temperature index, which is an 
verage from the entire eastern Bering Sea, might not be rep-
esentative of the temperature conditions in the habitat of Pa-
ific cod. Third, the linking equation (Equation (16) ) may not
e appropriate; therefore, alternative equations need to be ex- 
lored due to their impacts on model results (du Pontavice
t al., 2022 ). Finally, we observed that the assumed observa-
ion standard error impacted the wham _ ecov model results. A
maller error led to degraded model fits ( Supplementary Tab
e S4 ), which means that the observed environmental covari-
te conflicted with other data inputs informative to growth 

e.g. marginal length compositions). This result was evident 
fter 1985 when the input sample sizes for the length compo-
itions were higher ( Figure 7 d). Future work could explore

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad133#supplementary-data
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stimating the observation standard error as a parameter,
hich is an option in WHAM. 
Based on parametrizations already implemented for other
odel components in WHAM, we developed a nonparamet-

ic approach to model changes in population mean length- or
eight- at-age. In our case, the terms μ ˜ L a or μ ˜ W a 

(Equations
 8 ) and ( 14 )) may be externally calculated from a parametric
rowth function or observed data and then fixed, or internally
stimated as fixed effects while predicting δa,y as random ef-
ects. This approach differs from the semiparametric approach
f Thorson and Taylor (2014) and Xu et al. (2019) . For ex-
mple, for selectivity, the semiparametric approach is based on
 parametric (e.g. logistic equation) and a nonparametric part
e.g. random effects on age and year), and the estimation of the
xed effects parameters and prediction of the random effects
ccurs simultaneously (Xu et al., 2019 ). Evidence suggests
hat semiparametric structures will revert to the parametric
orm when data are uninformative but will approximate the
ata-generating process when data are highly informative (i.e.
ased on a representation theorem, Klein, 1976 ). We found
hat the estimated population mean weight-at-age from the
onparametric approach behaved as described for the semi-
arametric approach for GOA walleye pollock, i.e. reverting
o the parametric for ( μ ˜ W a 

) when no observed mean weights-
t-age were available and approximating the observed data
hen there was limited observation error. 
A common practice in age-structured assessment models

hat do not model growth internally is to use EWAA data
o calculate biomass-at-age from abundance-at-age. However,
his approach assumes that the available weight-at-age infor-
ation is known without error, an assumption that is not met

n most, if not all, cases (Kuriyama et al., 2016 ). We showed
or GOA walleye pollock that the EWAA input could be
reated as data while estimating the population mean weight-
t-age through the prediction of random effects with two
ovariance structures (independent and correlated over ages
nd years). The two configurations led to similar results, but
he more complex model with correlated random effects had
he lowest AIC ( �AIC = 172 ). The improved performance of
odels with correlated population processes has also been

ound previously. For example, Stock et al. (2021) found
hat imposing a 2DAR(1) structure on natural mortality im-
roved model fit and reduced retrospective patterns for SSB, F ,
nd recruitment for the Southern New England-Mid Atlantic
SNEMA) yellowtail flounder ( Limanda ferruginea ). In addi-
ion, Xu et al. (2019) and Nielsen and Berg (2014) modelled
orrelation by age and year in selectivity in age-structured
odels, leading to an improved model performance. Finally,

tock and Miller (2021) found improved model performance
nd reduced retrospective bias when predicting 2DAR(1) ran-
om effects on abundance-at-age in a simulation experiment
or several life histories. Recently, Cheng et al. (2023) pro-
osed a parametrization to account for year, age, and cohort
utocorrelation in mean weight-at-age and other biological
rocesses. This method offers a new approach to model time
ariability in weight or length-at-age and could be tested in
ssessment frameworks in the future. 

Forecasting is an important part of the fisheries manage-
ent process. When forecasting, assessments typically use
ata and estimates from the last year or an average from recent
ears for the projection period. This approach assumes that
ear-future conditions will not vary from the present, an as-
umption that is hardly ever met. Autoregressive processes in
tock assessment models are valuable when forecasting since
hey can be used to propagate uncertainty in short-term pro-
ections. Recruitment is one of the main processes when mak-
ng projections (Maunder and Thorson, 2019 ; Van Beveren
t al., 2021 ). However, growth is commonly assumed to be
ime-invariant despite being an important contributor to stock
iomass (Stawitz and Essington, 2018 ). Stock et al. (2021)
ound an improved consistency of biomass projections for
NEMA yellowtail flounder when survival and natural mor-
ality had a 2D (age and year) autocorrelation structure. Like-
ise, du Pontavice et al. (2022) improved short-term projec-

ions and uncertainty representation of recruitment and SSB
or the SNEMA yellowtail flounder by accounting for forecast
ncertainty of the Cool Pool Index modelled as an autoregres-
ive process. Mean SSB and uncertainty in projection years for
OA walleye pollock were larger in the model with a 2D auto-

orrelated population mean weight-at-age than in the model
hat used EWAA. These changes may influence the manage-
ent advice, as there is considerable interannual variability in

ize-at-age for this stock. 
For all our case studies, we found moderate to minor

ifferences in model estimates, which can partially be ex-
lained by the structural dissimilarities between platforms
e.g. SS3 vs. WHAM). For example, the estimation of the
nitial abundance-at-age is done differently in WHAM and
S3. In WHAM, we estimated an initial abundance-at-age 1
 N 1 , 1 ) and then, using an initial F ( F 1 ), we calculated the initial
bundance-at-age a using the exponential decay function from
 1 , 1 . In contrast, in SS3, the initial abundance-at-age a was

alculated using average recruitment from an “early period”
Methot and Wetzel, 2013 ). This distinction could explain the
ifference in SSB estimates between WHAM and SS3, espe-
ially during the early modelling period. Future studies could
xplore initializing the WHAM and SS3 models at an earlier
ear to explore if this results in more similar biomass trajec-
ories by the first year of substantial data. Another dissimi-
arity is how the process error for selectivity is parametrized.

HAM shares the process error variance across all the se-
ectivity parameters for a given fleet, whereas SS3 assumes a
ifferent process error variance for each selectivity parameter.
e expect that the extension presented in this study may make
HAM a potential platform to assess the status of a broader

ange of fish stocks in the future. 

onclusion 

e provided a novel framework to model growth and size-at-
ge in SSMs, implemented it in WHAM, and applied it to three
roundfish stocks in Alaska. Our study presents, for the first
ime, an SSM that is able to model growth using size-specific
nformation (e.g. marginal length compositions, CAAL), in ad-
ition to the features already developed in previous studies
or SSM (e.g. use of environmental information, projections;
tock and Miller, 2021 ). These new modelling approaches ex-
and the applicability of SSM and their benefits (e.g. more
ealistic uncertainty, estimation of process error, reduction of
etrospective patterns) to more stocks worldwide. Specifically,
ur case studies showed that WHAM can now be used as a
latform for assessing some fish stocks in Alaska; however, we
uggest further examination of the structural differences be-
ween WHAM and the assessment platforms currently used
or Alaskan fish stocks. 
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